
 

 

 

When Can Subscores  
Have Value? 
 

May 2005 
RR-05-08 

Research
Report

Shelby J. Haberman 

Research & 
Development 
 



When Can Subscores Have Value? 

Shelby J. Haberman 

ETS, Princeton, NJ 

May 2005 

 



As part of its educational and social mission and in fulfilling the organization's nonprofit charter 

and bylaws, ETS has and continues to learn from and also to lead research that furthers 

educational and measurement research to advance quality and equity in education and assessment 

for all users of the organization's products and services. 

ETS Research Reports provide preliminary and limited dissemination of ETS research prior to 

publication. To obtain a PDF or a print copy of a report, please visit: 

http://www.ets.org/research/contact.html 

Copyright © 2005 by Educational Testing Service. All rights reserved. 

College Board data copyright © 2004 by The College Board 
and used with permission All rights reserved. 

www.collegeboard.com 

EDUCATIONAL TESTING SERVICE, ETS, and the ETS logo are 
registered trademarks of Educational Testing Service. Praxis is a 

trademark of Educational Testing Service. College Board and SAT 
are registered trademarks of The College Board.  

 

 



Abstract

In educational tests, subscores are often generated from a portion of the items in a larger

test. Guidelines based on mean-squared error are proposed to indicate whether subscores

are worth reporting. Alternatives considered are direct reports of subscores, estimates of

subscores based on total score, combined estimates based on subscores and total scores, and

residual analysis of subscore. Applications are made to data from two testing programs.
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A basic criterion for reporting of a subscore based on a portion of the items in a larger

test should be whether the subscore provides a more accurate measure of the construct

it measures than is provided by the total score from the larger test. This standard for

subscore reporting is readily handled by using classical test theory. Arguments are based

on least squares and mean-squared error. Section 1 provides the basic theory required for

the analysis. Section 2 considers some examples from testing programs at ETS. Section 3

provides some conclusions from results of analysis.

1 Mean-Squared Errors for True Subscores

A true subscore can be estimated by use of the observed subscore, by use of the

observed total score, or by a combination of the observed subscore and the observed total

score. It is also possible to estimate the residual true subscore from regression of the true

subscore on the true total score.

Classical Test Theory Background

To study these estimations, it is helpful to introduce some elementary classical test

theory. Let A be an observed subscore, let AT be the corresponding true score, and let AE

be the error A−AT of measurement. Let E represent a mean, σ2 represent a variance, and

σ represent a standard deviation, so that E(A) is the mean of A, σ2(A) is the variance of

A, and σ(A) is the standard deviation of A. Under classical test theory (Lord & Novick,

1968; Holland & Hoskens, 2003), AT and AE are uncorrelated and E(AE) = 0, so that

E(AT ) = E(A) and

σ2(A) = σ2(AT ) + σ2(AE).

Similarly, let B be an observed total score, let BT be the corresponding true score, and let

BE = B − BT be the error of measurement, so that E(BE) = 0, E(B) = E(BT ), BT and

BE are uncorrelated, E(BE) = 0, and

σ2(B) = σ2(BT ) + σ2(BE).

It is also the case that the measurement error BE is uncorrelated with the true score AT

and the measurement error AE is uncorrelated with the true score BT . Let σ2(A) and σ2(B)
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be assumed to be positive. Let Cov denote a covariance, and let ρ denote a correlation, so

that Cov(A, AT ) is the covariance σ2(AT ) of A and AT , and

ρ(A, AT ) =
Cov(A, AT )

σ(A)σ(AT )
=

σ(AT )

σ(A)
(1)

is the correlation of the observed score A and the true score AT . Let ρ2 denote a squared

correlation, so that

ρ2(A, AT ) =
σ2(AT )

σ2(A)

is the reliability coefficient of A. Similarly,

ρ2(B, BT ) =
σ2(BT )

σ2(B)

is the reliability coefficient of B. Analysis of the subscore A and the total score B is affected

by the covariances

Cov(A, B) = σ(A)σ(B)ρ(A, B)

and

Cov(AT , BT ) = σ(AT )σ(BT )ρ(AT , BT ) = σ(A)σ(B)ρ(A, AT )ρ(B, BT )ρ(AT , BT ). (2)

The covariance and correlation of the true scores AT and BT may be determined by use

of measurement properties of the remainder test score C = B − A. Because the true scores

AT and BT are not correlated with the measurement errors AE and BE, the true score of C

is CT = BT − AT , the error of measurement CE = BE − AE of C is uncorrelated with the

true score CT , E(CT ) = E(C), E(CE) = 0,

σ2(C) = σ2(CT ) + σ(CE),

and

ρ2(C, CT ) =
σ2(CT )

σ2(C)
.

One has

Cov(A, B) =
σ2(A) + σ2(B)− σ2(C)

2
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and

Cov(AT , BT ) =
σ2(AT ) + σ2(BT )− σ2(CT )

2
.

In practice, estimates of the means E(A) and E(B) and the standard deviations σ(A),

σ(AE), σ(B), and σ(BE), and reliability coefficients ρ2(A, AT ) and ρ2(B, BT ) are readily

obtained from reports on testing programs produced at ETS. Given these estimates, σ2(A),

σ2(B), σ2(AT ), σ(AT ), σ2(BT ), and σ(BT ) are readily estimated. For example,

σ(AT ) = σ(A)ρ(A, AT ).

Estimation of Cov(A, B) and Cov(AT , BT ) is slightly more complicated, for it is not

necessarily the case that measurement properties of C are directly available from reported

data. In typical cases, a test score B is divided into k ≥ 2 components Ci, 1 ≤ i ≤ k, A is

Ch for some h from 1 to k, and B =
∑k

i=1 Ci. Corresponding to each Ci is a true score CTi

and an error CEi such that

Ci = CTi + CEi,

E(CEi) = 0, CEi and CEj are uncorrelated for i 6= j. Data from standard summaries include

estimates for ρ(Ci, Cj) and ρ(CTi, CTj) for i 6= j and for σ(CTi), σ(Ci), and ρ2(Ci, CTi).

One may exploit the relationships

Cov(A, B) =
k∑

i=1

σ(Ch)σ(Ci)ρ(Ch, Ci)

and

Cov(AT , BT ) =
k∑

i=1

σ(CTh)σ(CTi)ρ(CTh, CTi).

Naturally, if i = h, then

σ(Ch)σ(Ci)ρ(Ch, Ci) = σ2(Ci)

and

σ(CTh)σ(CTi)ρ(CTh, CTi) = σ2(CTi).

In the analysis in this paper, the reliability estimates produced by testing programs are

taken as given. For the cases under study, basic computations involve the KR-20 approach

(Kuder & Richardson, 1937; Dressel, 1940) and the Kristof approach (Kristof, 1974).
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Direct Approximation

Given the summary measures just described, it is a relatively straightforward matter

to consider the approximation of the true subscore AT . For a baseline to compare

approximations, consider the trivial prediction of AT by the constant E(A). The

mean-squared error is then

σ2(AT ) = E([AT − E(A)]2), (3)

so that the root mean-squared error is σ(AT ). If AT is approximated by the observed score

A, then the mean-squared error is

σ2(AE) = E([A− AT ]2). (4)

The root mean-squared error is

σ(AE) = σ(A)[1− ρ2(A, AT )]1/2. (5)

Alternatively, Kelley’s formula may be applied, so that AT is approximated by

K = E(A) + ρ2(A, AT )[A− E(A)], (6)

and the mean-squared error is

σ2(K − AT ) = ρ2(A, AT )σ2(AE) = [1− ρ2(A, AT )]σ2(AT ) (7)

(Kelley, 1947). The root mean-squared error is

σ(K − AT ) = ρ(A, AT )σ(AE) = ρ(A, AT )[1− ρ2(A, AT )]1/2σ(A). (8)

The proportional reduction of mean-squared error from use of K rather than the constant

predictor E(A) to predict AT is

σ2(AT )− σ2(K − AT )

σ2(AT )
= ρ2(A, AT ). (9)
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Regression Approximation

Regression analysis may be employed to approximate the true subscore AT by the

observed total score B (Wainer et al., 2001; Holland & Hoskens, 2003). The covariance

Cov(AT , B) = Cov(AT , BT ),

so that (1) and (2) imply that the prediction is

L = E(A)+
Cov(AT , BT )

σ2(B)
[B−E(B)] = E(A)+ ρ(B, BT )ρ(AT , BT )

σ(AT )

σ(B)
[B−E(B)], (10)

the mean-squared error is

σ2(L− AT ) = σ2(AT )− [Cov(AT , BT )]2/σ2(B) = [1− ρ2(B, BT )ρ2(AT , BT )]σ2(AT ), (11)

and the root mean-squared error is

σ(L− AT ) = [1− ρ2(B, BT )ρ2(AT , BT )]1/2σ(AT ). (12)

The proportional reduction in mean-squared error from use of L rather than E(A) to

predict AT is

ρ2(AT , B) =
σ2(AT )− [1− ρ2(B, BT )ρ2(AT , BT )]σ2(AT )

σ2(AT )
= ρ2(B, BT )ρ2(AT , BT ). (13)

If σ(L − AT ) is less than σ(K − AT ), then use of the subscore A by itself is very difficult

to justify for estimation of the true score AT , for the true score AT in this instance is

better approximated by use of the regression based on the observed total score B than

by use of the estimate derived from Kelley’s formula from the observed subscore A. The

condition that σ(L − AT ) is less than σ(K − AT ) is equivalent to the condition that

ρ(B, BT )ρ(AT , BT ) exceeds ρ(A, AT ). Thus use of the total score rather than the subscore

is increasingly favored as the reliability of the total score increases, the correlation of true

subscore and true total score increases, and the reliability of the subscore decreases.

One may also consider joint use of the observed subscore A and the total score B in

approximation of AT . Use of A and B together is equivalent to use of A and the remainder
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score C = A−B, although some changes in formulas are required. The best linear predictor

of AT based on A and B is

M = E(A) + β[A− E(A)] + γ[B − E(B)], (14)

where β and γ satisfy the normal equations

βσ2(A) + γ Cov(A, B) = Cov(AT , A) = σ2(AT )

and

β Cov(A, B) + γσ2(B) = Cov(AT , B) = Cov(AT , BT ).

With a bit of algebra, one finds that

γ =
σ(A)

σB
ρ(A, AT )τ, (15)

where

τ =
ρ(B, BT )ρ(AT , BT )− ρ(A, B)ρ(A, AT )

1− ρ2(A, B)
, (16)

and

β = ρ(A, AT )[ρ(A, AT )− ρ(A, B)τ ]. (17)

The mean-squared error

σ2(M − AT ) = ρ2(A, AT )[1− ρ2(A, AT )− τ 2]σ2(A). (18)

The proportional reduction in mean-squared error from use of M rather than E(A) to

predict AT is then

ρ2(AT , M) = ρ2(A, AT ) + τ 2. (19)

Obviously, σ2(M − AT ) is no greater than the minimum ν of σ2(L− AT ) and σ2(K − AT ).

If σ2(M − AT ) is substantially smaller than ν, then M is worthy of consideration.

All analysis may be reported in terms of A and the remainder score C. For example,

M = E(A) + (β + γ)[A− E(A)] + γ[C − E(C)].
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Approximation of the True Residual

It is also possible to examine the true residual

DT = [AT − E(A)]− ζ[BT − E(B)]. (20)

By (2), the regression coefficient

ζ =
Cov(AT , BT )

σ2(BT )
=

ρ(AT , BT )σ(AT )

σ(BT )
.

This residual is the difference between the true subscore AT and its best linear predictor

based on the true total score BT . Thus DT provides a measure of the information provided

by the true subscore that is not provided by the true total score. A positive value of DT

would indicate that expected performance on the subscore is better than expected from the

total score, while a negative value of DT suggests a weaker performance on the subscore

than predicted by the total score.

The trivial approximation of DT is the constant predictor 0 that corresponds to a true

subscore that is a linear function of the true total score. The mean-squared error is then

σ2(DT ) = [1− ρ2(AT , BT )]σ2(AT ), (21)

so that the root mean-squared error is

σ(DT ) = [1− ρ2(AT , BT )]1/2σ(AT ). (22)

Note that σ(DT ) < σ(L− AT ).

An alternative approximation is

D = [A− E(A)]− ζ[B − E(B)]. (23)

In this case,

DE = D −DT = AE − ζBE, (24)

so that E(D) = E(DT ) = E(DE) = 0, DT and DE are uncorrelated, and the mean-squared

error of D is

σ2(DE) = σ2(AE)− 2ζ Cov(AE, BE) + ζ2σ2(BE). (25)
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To evaluate the mean-squared error, note that

Cov(AE, BE) = Cov(A, B)− Cov(AT , BT ).

Kelley’s formula can be applied here as well. If

F = ρ2(D, DT )D, (26)

then

σ(F −DT ) = ρ(D, DT )σ(DE). (27)

In (27),

ρ2(D, DT ) =
σ2(DT )

σ2(D)
=

σ2(DT )

σ2(DT ) + σ2(DE)
.

Note that ρ2(D, DT ) is the reliability of D.

2 Examples

To illustrate application of subscores, consider data from the October 2002,

administration of the SAT r© I examination (Feigenbaum & Hammond, 2003). Results are

summarized in Tables 1, 2, 3, and 4. In these tables, Verbal I, Verbal II, and Verbal III refer

to the three separate portions of the SAT verbal examination, which are interleaved with

Math I, Math II, and Math III, the three separate portions of the SAT math examination.

An alternative breakdown of the SAT verbal uses critical reading (CR), analogies (A),

and sentence completion (SC). Similarly, an alternate decomposition of SAT math uses

four-choice math multiple choice (Math 4c), five-choice multiple choice (Math 5c), and

student-produced math responses (Math S). To examine these tables, recall formulas (5),

(8), (9), (12), (13), (14), (17), (15), (19), (22), (25), and (27). In Table 2, proportional

reduction in mean-squared error is relative to use of a constant predictor equal to the

expected subscore. In Table 4, the proportional reduction calculation is relative to use of

the constant 0.

In these tables, for any given line, the subscore is A and the total score is B. For

example, let A be the subscore of the first verbal section (10 sentence completions, 13

analogies, and a 13-item reading passage), and let B be the total score for the 78-item
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verbal test. Then σ(AE) is estimated to be 2.9, while σ(K − AT ) is estimated to be 2.7.

In this case, the subscore is clearly unsatisfactory relative to the approximation L based

on the total score, for σ(L − AT ) is estimated to be 2.0, a somewhat smaller figure than

is available from A itself. Use of M yields only a slight reduction in root mean-squared

error, for σ(M −AT ) is also 2.0 if two significant figures are used. The weight β assigned to

the subscore A is only 0.13. Both L and M are quite respectable estimates for AT , for the

proportional reductions in mean-squared error are both 0.91 to two significant figures. In

the case of the residual estimates, σ(DT ) is estimated to be 0.8, σ(DE) has estimate 2.2,

and σ(F −DT ) has estimate 0.7, so that there is little gain from use of F or D instead of

the estimate 0 for DT . Note that the proportional reduction in mean-squared error from

use of F rather than 0 is only 0.11.

Similar results apply to the other sections of the verbal examination, and similar results

also apply if A is a section of and B is the total score for the math examination. The

variations in Table 1 in the coefficient γ mostly just reflects relative lengths of sections.

In summary, none of the reported subscores of SAT I math or SAT I verbal provides any

appreciable information concerning an examinee that is not already provided by the total

score.

On the other hand, the analysis here would certainly support use of separate math and

verbal scores. Let A be the math total, and let B be the sum of the math and verbal total.

In this case, σ(AE) = 3.7, σ(K − AT ) = 3.6, and σ(L − AT ) = 5.4, so that the math true

score is much less well-predicted by the combined total score than by the the math score.

Similarly, for the verbal score, σ(AE) = 4.6, σ(K −AT ) = 4.4, and σ(L−AT ) = 5.7. There

is little value in use of the joint predictor M . Here σ(M − AT ) is 3.4 for math and 4.2 for

verbal.

In the case of residual analysis, for math, σ(DT ) is 4.7, σ(DE) is 2.9, and σ(F −DT ) is

2.4. Because the total score is the sum of the math and verbal subscores, the same results

apply for the verbal test. The estimated proportional reduction in mean-squared error from

use of F rather than 0 is the estimated reliability coefficient 0.73 in both cases. Thus use

of F does provide a substantial gain over the trivial estimate of 0. The root mean-squared
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Table 1.
Root Mean-Squared Errors for True Score Estimation for SAT Subscores

Items in Total
Subscore subscore score σ(AE) σ(K − AT ) σ(L− AT ) σ(M − AT ) β γ
Verbal I 36 Verbal 2.9 2.7 2.0 2.0 0.13 0.35
Verbal II 30 Verbal 2.8 2.5 1.6 1.6 -0.02 0.35
Verbal III 12 Verbal 1.8 1.5 1.1 1.0 0.19 0.13
CR 40 Verbal 3.4 3.2 2.6 2.5 0.16 0.39
A 19 Verbal 2.1 1.8 1.3 1.2 0.17 0.17
SC 19 Verbal 2.1 1.8 1.3 1.2 0.20 0.18
Math I 25 Math 2.3 2.1 1.7 1.6 0.16 0.35
Math II 25 Math 2.3 2.1 1.5 1.5 0.07 0.33
Math III 10 Math 1.5 1.2 0.7 0.7 0.06 0.13
Math 4c 15 Math 1.9 1.6 0.9 0.9 0.03 0.21
Math 5c 35 Math 2.7 2.6 2.1 2.1 0.10 0.50
Math S 10 Math 1.2 1.1 0.7 0.7 0.16 0.12
Verbal 78 Total 4.6 4.4 5.7 4.2 0.70 0.13
Math 60 Total 3.7 3.6 5.4 3.4 0.76 0.09

Table 2.
Proportional Reduction of Mean-Squared Error Achieved by True Score

Estimation for SAT Subscores

Subscore Total score K L M
Verbal I Verbal 0.84 0.91 0.91
Verbal II Verbal 0.80 0.92 0.92
Verbal III Verbal 0.72 0.86 0.87
CR Verbal 0.84 0.89 0.90
A Verbal 0.74 0.87 0.88
SC Verbal 0.78 0.88 0.89
Math I Math 0.87 0.92 0.92
Math II Math 0.83 0.91 0.91
Math III Math 0.64 0.89 0.89
Math 4c Math 0.72 0.91 0.91
Math 5c Math 0.89 0.93 0.93
Math S Math 0.73 0.89 0.90
Verbal Total 0.91 0.85 0.92
Math Total 0.92 0.82 0.93
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Table 3.
Root Mean-Squared Error for Residual Estimation for SAT Subscores

Subscore Total score σ(DT ) σ(DE) σ(F −DT )
Verbal I Verbal 0.8 2.2 0.7
Verbal II Verbal 0.3 2.2 0.3
Verbal III Verbal 0.8 1.7 0.7
CR Verbal 1.3 2.3 1.2
A Verbal 0.8 1.9 0.7
SC Verbal 0.8 1.8 0.7
Math I Math 0.5 1.8 0.5
Math II Math 0.6 1.8 0.6
Math III Math 0.4 1.4 0.4
Math 4c Math 0.5 1.6 0.5
Math 5c Math 0.5 1.8 0.5
Math S Math 0.4 1.2 0.4
Verbal Total 4.7 2.9 2.4
Math Total 4.7 2.9 2.4

Table 4.
Proportional Reduction of Mean-Squared Error Achieved by Residual

Estimation for SAT Subscores

Subscore Total score F
Verbal I Verbal 0.11
Verbal II Verbal 0.02
Verbal III Verbal 0.18
CR Verbal 0.24
A Verbal 0.16
SC Verbal 0.15
Math I Math 0.09
Math II Math 0.11
Math III Math 0.08
Math 4c Math 0.08
Math 5c Math 0.07
Math S Math 0.12
Verbal Total 0.73
Math Total 0.73
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error from use of F is about half the corresponding root mean-squared error from use of 0.

On the other hand, the proportional reduction of mean-squared error of 0.73 from use of

F to assess deviation of SAT I math from the value expected by SAT I total is somewhat

smaller than the proportional reduction in mean-squared error of 0.92 associated with use

of K for estimation of SAT I math.

One may argue that it is unreasonable to expect very much information from

subscores in the SAT I math and verbal examinations. The SAT I math and SAT I verbal

examinations measure relatively limited content areas. On the other hand, some Praxis
TM

examinations contain parts that test very distinct content areas. For instance, consider the

test titled Fundamental Subjects: Content Knowledge with code 0511 (Grant, 2003). This

test measures English language arts (E), mathematics (M), citizenship and social science

(C), and science (S). Each area is measured with 25 multiple-choice items, and the total

raw score is the sum of the scores for each area. Results are summarized in Tables 5, 6, 7,

and 8.

Here the direct estimate K of true subscore is roughly comparable to the estimate L

of true subscore derived from the total score. Use of M provides a modest but appreciable

improvement in all cases. Results are best for mathematics, and in all cases a relatively

substantial weight is given to the direct estimate. With M , proportional reductions of

mean-squared error are around 0.8, so that estimation of the true subscores by use of M can

be regarded as relatively successful; however, the proportional reductions in error achieved

from M are somewhat smaller than those achieved with M for subscores of SAT I math

or verbal. The essential issue would appear to be that the subscores are less accurately

predicted by total score in the Praxis case.

For residual analysis, appreciable gains over estimation of DT by 0 are only seen for

English language arts and mathematics, and even here the gains require use of F . The

proportional reductions in mean-squared error reported in Table 8 are all relatively modest.
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Table 5.
Root Mean-Squared Error for True Score Estimation for Praxis Subscores

Subscore σ(AE) σ(K − AT ) σ(L− AT ) σ(M − AT ) β γ
E 1.7 1.5 1.5 1.3 0.44 0.10
M 1.9 1.7 1.9 1.5 0.51 0.12
C 1.8 1.5 1.3 1.2 0.60 0.03
S 2.0 1.7 1.3 1.3 0.57 0.05

Table 6.
Proportional Reduction of Mean-Squared Error Achieved by True Score

Estimation for Praxis Subscores

Subscore K L M
E 0.73 0.70 0.80
M 0.79 0.73 0.83
C 0.68 0.77 0.81
S 0.69 0.80 0.82

Table 7.
Root Mean-Squared Error for Residual Estimation for Praxis Subscores

Subscore σ(DT ) σ(DE) σ(F −DT )
E 1.3 1.5 1.0
M 1.6 1.6 1.1
C 1.0 1.6 0.8
S 1.0 1.7 0.9

Table 8.
Proportional Reduction of Mean-Squared Error Achieved by Residual

Estimation for Praxis Subscores

Subscore F
E 0.43
M 0.48
C 0.29
S 0.25
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3 Conclusions

The methods of subscore analysis proposed are very easily implemented and provide

a rational criterion for assessing the value of subscores. Results suggest that a good deal

of caution is needed. Subscores are most likely to have value if they have relatively high

reliability by themselves and if the true subscore and true total score have only a moderate

correlation. Both conditions are important. The SAT subscores are relatively unsuccessful

due to the very high correlations of their true scores with the true total score; however,

many of the subscores are rather reliable. Appropriate approximations of the true subscore

give very high weight to the total score. The Praxis subscores are often less reliable than

are many of the SAT subscores, but the correlation of true subscores to true total score

is somewhat more modest than for the SAT subscores. Nonetheless, even for the Praxis

subscores, which are all based on 25 items and measure very different content areas, the

subscores are best used when combined with the total score, and the reliability of the

resulting combination M is somewhat less than for the total score. Although the results

here do not prove that subscores cannot be useful, they do suggest that claims for the

value of subscores should be treated skeptically and should be verified by use of procedures

similar to those in this report.

This report emphasizes simple approaches to subscores. It is possible that alternatives

can be constructed that are quite attractive in particular applications. For example,

subscore predictions from total scores may be based on use of log-linear models or use of

item-response theory. Thus additional work can be considered to aid in subscore assessment.
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